Aspects écologiques d'un peuplement à *Cystoseira dubia* Valiante dans le circalittoral de Catane (Sicile orientale, Italie)

Ecological aspects of an assemblage of *Cystoseira dubia* Valiante in the circalittoral zone of Catania (Eastern Sicily, Italy)

Guglielmo Tita

Département d'Océanographie - Université du Québec à Rimouski Rimouski, Québec, G5L 3A1 (Canada)

Mots clés: Cystoseira dubia, phytobenthos, écologie marine, fluctuations saisonnières, coralligène, Sicile, mer Ionienne.

Key-words: Cystoseira dubia, phytobenthos, marine ecology, seasonal variations, coralligenous community, Sicily, Ionian Sea.

RÉSUMÉ

Tita Guglielmo, 1994 - Aspects écologiques d'un peuplement à Cystoseira dubia Valiante dans le circalittoral de Catane (Sicile orientale, Italie). Mar. Life, 4 (2): 9-17.

Un peuplement à Cystoseira dubia a été échantillonné chaque mois pendant un an (mai 1989 - avril 1990) dans le circalittoral rocheux à proximité de Catane (Sicile orientale, Italie). Le peuplement se localise à la limite (28-38 m) inférieure des fonds durs. On y a trouvé 118 espèces végétales d'algue, avec une moyenne de 45 espèces par relevé (900 cm²). La dominance quantitative et la dominance qualitative des groupes écologiques des espèces présentes montrent le caractère sciaphile du peuplement et son affinité à un milieu de mode calme. Le rapport R/P moyen est de 5,5. Les variations saisonnières de l'indice de diversité de Shannon-Weaver (3,38 - 4,91) et de l'équitabilité (0,59 - 0,88) sont en relation avec les différentes phases du cycle annuel du peuplement, qui correspondent à différents niveaux d'organisation. La mesure des paramètres physicochimiques montre que le cycle annuel de développement de C. dubia dépend plus de la photopériode que de la température. Cystoseira dubia a besoin d'un substrat dur et très irrégulier pour se fixer, trois types d'ancrage au fond étant utilisés : i) en pince, ii) en crochet, iii) passif (couverture des cauloïdes prostrés par des corallinacées encroûtantes). Certaines particularités du peuplement à C. dubia et de son biotope justifient la proposition de l'Association phytosociologique Cystoseiretum dubiae Furnari, Scammacca, Cormaci, Battiato, 1977 (in Giaccone et al., 1994), et non le maintien d'un faciès particulier du Cystoseiretum zosteroidis Giaccone, 1973 comme auparavant.

ABSTRACT

Tita Guglielmo, 1994 - [Ecological aspects of an assemblage of Cystoseira dubia Valiante in the circalittoral zone of Catania (Eastern Sicily, Italy)]. Mar. Life, **4** (2): 9-17.

A Cystoseira dubia assemblage was studied for one year (May 1989 - April 1990) in the circalittoral zone of Cannizzaro, Acicastello, near Catania (eastern Sicily, Italy). This assemblage lies at the lower limit of rocky bottoms (28-38 m). 118 species of algae were found, with an average of 45 species per sample (900 cm²). The quantitative and qualitative dominance of the ecological groups of the species occuring there show the sciaphilic character of the assemblage. The average R/P ratio was 5.5. The seasonal variations of Shannon-Weaver's diversity index (3.38 - 4.91) and of equitability (0.59 - 0.88) show the different phases of the annual cycle of the assemblage, which represent different levels of organisation. The annual cycle of development of C. dubia depends on photoperiod rather than on temperature. Cystoseira dubia needs a very irregular rocky bottom to settle. Three modes of anchorage to the bottom were observed: i) pincers-type, ii) hook-type, iii) passive-type (prostrate cauloids are covered by crustose algae). The particular character of this assemblage and its biotope justify the proposal of the phytosociological Association Cystoseiretum dubiae Furnari, Scammacca, Cormaci, Battiato, 1977 (in Giaccone et al., 1994), rather than the maintenance of a particular facies of Cystoseiretum zosteroidis Giaccone, 1973 as previously.

INTRODUCTION

Cystoseira dubia Valiante (1883) (Phaeophyceae, Fucales) est l'espèce guide de l'Association phytosociologique Cystoseiretum dubiae Furnari, Scammacca, Cormaci, Battiato, 1977 appartenant à la classe phytosociologique Cystoseiretea Giaccone 1965 (in Giaccone et al., 1994).

Les espèces caractéristiques du *Cystoseire-tum dubiae* sont : *Cystoseira dubia, Nitophyllum tristromaticum, Kallymenia patens* (Giaccone *et al.* 1994).

Cette Association se développe dans le circalittoral supérieur et dans les zones soumises à un hydrodynamisme faible, une sédimentation relativement intense, une intensité lumineuse comprise entre 1 et 0,3 % de l'irradiance de surface et une température qui varie entre 14° et 16° C (Giaccone 1973).

Les études concernant l'Association Cystoseiretum dubiae sont relativement peu nombreuses et n'abordent guère son habitat et son cycle annuel. Le but de cette étude est donc d'approfondir les connaissances sur son écologie et d'analyser ses variations saisonnières sur un cycle annuel complet d'un peuplement bien représentatif de cette association.

MATÉRIEL ET MÉTHODE

Le peuplement étudié se trouve à environ 150 m de la côte de Cannizzaro, Acicastello, à proximité de Catane (Sicile orientale, Italie) (Figure 1). Il est localisé au niveau de la limite inférieure des fonds durs entre 28 m et 38 m de profondeur.

On a effectué 12 relevés mensuels de 900 cm² (chaque première décade du mois) de mai 1989 à avril 1990. Les échantillons ont été prélevés toujours à la profondeur d'environ 34 m dans une zone homogène du peuplement suffisamment étendue (rayon d'environ 5 m) et physionomiquement représentative de l'Association. L'exposition de la côte est Est-Sud-Est et la pente du fond de 0-5°.

Pour chaque échantillon, on a étudié la fraction végétale en notant les espèces présentes (N) et leur recouvrement (Ri) exprimé en pourcentage de la surface du relevé couverte en projection, les indices suivants ont été calculés :

- le recouvrement spécifique moyen par relevé (RiM) :

RiM = RiT/N (RiT = ∑ Ri = recouvrement total) - l'écart-type (s) des recouvrements spécifiques (Ri) par rapport au recouvrement spécifique moyen par relevé :

 $s = 1/N-1 \times \sum (Ri - RiM)^2$

- le rapport R/P (Feldmann, 1937) :
R/P = nombre de Rhodophyces

R/P = nombre de Rhodophyceae / nombre de Phaeophyceae

- l'indice de diversité de Shannon-Weaver (H') (in Frontier, Pichod-Viale, 1991) :

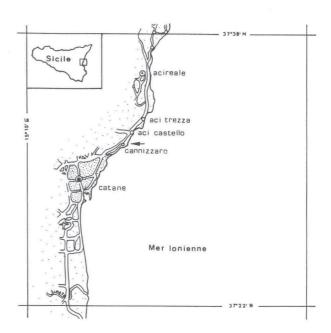


Figure 1 - zone d'étude (flèche noire) et toponymie utilisée. / Studied zone (black arrow) and toponymy used.

 $H' = -\sum Ri/RiT \times log Ri/RiT$ (log de base 2) - l'indice de diversité maximale théorique (H'max):

H'max = log N (log de base 2) - l'équitabilité ou régularité (E) : E = H'/H'max

Le calcul de ces indices a été fait en réunissant les différents morphotypes d'une même espèce.

Les groupes écologiques (G.E.) définis par Boudouresque (1984) ont été utilisés pour obtenir des informations sur le milieu physique à partir de la dominance quantitative (DR% = somme des Ri des espèces d'un groupe / Rt) et de la dominance qualitative (DQ% = nombre d'espèces d'un groupe / N) des espèces présentes dans le peuplement. La tension (T = DR% / DQ%) (Boudouresque 1970) a été calculée pour évaluer le caractère typique (T > 1 : typique, T < 1 atypique) des espèces sciaphiles (G.E. : SSB, SSBf, SSBc, SM, SI, SIC, SCI, SCIT, SC, SRh, CC, CCT) et des espèces de mode calme (G.E. : PhIC, SCI, SCIT, SC) dans le peuplement.

Dans le but de mesurer certains paramètres chimiques de l'environnement (pH, salinité, oxygène dissous), on a échantillonné de l'eau de mer à partir de juillet 1989. L'eau a été prélevée toujours à la profondeur de 34 m et à 1 m au-dessus du fond, en utilisant un récipient en polyuréthane, nettoyé de toute trace de substances chimiques et stérilisé. L'eau était analysée moins d'une heure après l'émersion. La température de l'eau a été mesurée in situ (± 0,2° C) à 34 m et à 3 m de profondeur avec un thermomètre à alcool.

La photopériode a été calculée sur la base des éphémérides locales, fournies par le Service météorologique de l'aéroport de Catane.

Un échantillon de 2 000 cc des 5 premiers cm de sédiment a été prélevé en janvier dans une Tableau I - Espèces d'algue présentes dans les 12 relevés mensuels de 900 cm² (mai 1989 - avril 1990) et leur recouvrement. p = nombre de présences. G.E. = groupes écologiques (Boudouresque 1984) : PhI (Photophile Infralittoral), PhIT (Photophile Infralittoral Thermophile), PhIC (Photophile Infralittoral Calme), SSB (Sciaphile Superficiel Battu), SSBf (Sciaphile Superficiel d'affinités froides), SSBC (Sciaphile Superficiel d'affinités chaudes), AS (AntiSciaphile - indifférent à la lumière dans les régions chaudes, tendance à sciaphilie dans les régions froides), ISR (Infralittoral de Substrat Rocheux), SM (Sciaphile Meuble - profond), SI (Sciaphile Infralittoral - indifférent à l'agitation), SCI (Sciaphile Infralittorale de mode Calme), SCIT (Sciaphile Infralittorale de mode relativement Calme Tolérant), SIC (Sciaphile Infralittoral), SC (Sciaphile de mode Calme), SRh (Sciaphile Rhéophile), CC (Concrétionnement Coralligène Tolérant).

Species of algae in the 12 monthly samples (May 1989 - April 1990) of 900 cm² and their coverage (%).

p = occurrences G.E. = ecological groups (Boudouresque 1984) : PhI (Photophilic and Infralittoral), PhIT (Photophilic and Infralittoral Thermophilous), PhIC (Photophilic and Infralittoral in Quiet Waters), SSB (Sciaphilic and Infralittoral high energy environment), SSBf (Sciaphilic and Infralittoral high energy environment, cold), SSBc (Sciaphilic and Infralittoral high energy environment, warm), AS (Anti-Sciaphilic), ISR (Infralittoral, Hard Bottom), SM (Sciaphilic from Soft Bottom), SI (Sciaphilic and Infralittoral), SCI (Sciaphilic and Infralittoral in Quiet Waters), SCIT (Sciaphilic and Infralittoral), SC (Sciaphilic in Quiet Waters), SRh (Sciaphilic and Rheophilous), CC (Coralligenous Concretion), CCT (Coralligenous Concretion Tolerant).

	G.E.	mai	jun	juil	aou	sep	oct	nov	dec	jan	fev	mar	avr	p
Espèces sciaphiles														
Cystoseira dubia Valiante	SC	30	50	60	90	80	50	5	1	1	1	1	5	12
Nithophillum tristromaticum Rodriguez ex Mazza	SC	5	30	20	1	20	20	40	30	10	20	5	1	12
Halopteris filicina (Grateloup) Kuetzing	SCIT	40	40	70	10	5	20	10	20	10	5	10	30	12
Peyssonnelia rubra (Greville) J. Agardh	SC	10	10	10	5	10	10	5	5	20	20	10	5	12
Plocamium cartilagineum (Linnée) Dixon	SSBf	1	1	1	1	1	1	1	1	1	1	1	1	12
Acrosorium venulosum (Turner) Kylin	CCT	1	1		1	1	1	1	1	1	1	1	1	11
Contarinia squamariae (Meneghini) Denizot	SC		1	1	1	5	5	10	10	1	5	5	1	11
Neurocaulon foliosum Zanardini	SC	1	1	1	1	1	1	1	1	1	5	1	1	11
Ceramium bertholdii Funk	CC	1		1	1	1	1	1	1	1	1	1	1	11
Ceramium comptum Boergesen	SC	1	1	1	1		1	1	1	1	1	1	1	11
Callithamnion tenuissimum (Bonnemaison) Kuetzing	SC	1		1	1	1	1	1	1	1		1	1	10
Derbesia tenuissima (gamétoph.) (De Notaris) Crouan	50									1				
& Crouan	SIC	1	1		1	1	1	1	1		1	1	1	10
Fosliella farinosa (Lamouroux) Howe	SC	1	1	1	1	1	1	1	1	1	1			10
Hypoglossum hypoglossoides (Stackhouse) Collins														
& Harvey	SIC	1	1		1		1	1	1	1	1	1	1	10
Meredithia microphylla J. Agardh	SC	1	1	1	1		1	1	1	1		1	1	10
Pterothamnion plumula (Ellis) Naegeli v. plumula	SC	1		1	1	1	5	10	1	1		1	1	10
Eupogodon planus (C. Agardh) Zanardini	CCT	1	1	1		1	1	1	1	1	1			9
Pterothamnion crispum (Ducluzeau) Naegeli	SCI	1	1	1	1				1		1	1	1	9
Dictyota linearis (C. Agardh) Greville	SC	1	10	1	1	1		1	1		1		1	9
Feldmannophycus rayssiae (J. & G. Feldmann) Augier														
& Boudouresque	SSBc			1		1	1	1	1	1	1	1	1	9
Heterosiphonia crispella (C. Agardh) Wynne	SI	1			1			1	1	1	1	1	1	8
Noegoniolithon mamillosum (Hauck) Setchell & Mason	CC	5	1	5	1	5		5		20	1			8
Peyssonnelia polymorpha (Zanardini) Schmitz	SIC	1	5			5	1		1	10	5			7
Champia parvula (C. Agardh) Harvey	SC			1	1	1	1	1	1	1				7
Pleonosporium borreri (Smith) Hauck	SI			1		1	1	1	1		1		1	7
Ptrerothamnion plumula (Ellis) Naegeli	212													
v. bebbii (Reinsch) J. Feldmann	SC	1		1			1	1	1			1	1	7
Sebdenia monardiana (Montagne) Berthold	CC	20			10	1	20		20			5		6
Acrodiscus vidovichii (Meneghini) Zanardini	CCT	1	5		1	1		1				1		6
Apoglossum ruscifolium (Turner) J. Agardh	SIC				1			1	1	1	1	1		6
Lomentaria clavaeformis Ercegovic	SC					1	1	1	1			1	1	6
Rodriguezella pinnata (Kuetzing) Schmitz	CC		1	1					1			1	1	5
Pseudolithophyllum orbiculatum (Foslie) Lemoine	SC				1		1	1				1	1	5
Sphacelaria plumula Zanardini	CCT						5	1	1			1	1	5
Dictyopteris polypodiodes (Stackhouse) Battars	SI		5		1	5		1						4
Lobophora variegata (Lamouroux) Womersley	SCI		1	1		1						1		4
Nitophyllum flabellatum Ercegovic	SC							1	1			1	1	4
Pseudolithophyllum expansum (Philippi) Lemoine	SC	1		1				1			5			4
Bonnemaisonia asparagoides (Woodward) C. Agardh	SCI										1	1	1	3
Caulacanthus ustulatus (Mertens) Kuetzing	SSBc		1				1				1			3
Elachista stellaris (Dillwyn) Aresthoug	SRh				1	1	1							3
Fauchea repens (C. Agardh) Montagne	CC	1					1	1						3
Fosliella farinosa (Lamouroux) Howe v. chalicodictya														
Taylor	SC							1		1	1			3
Griffithsia opuntioides J. Agardh	SSB				1					1	1			3
Halodictyon mirabile Zanardini	SCI						1	1				1		3
Nereia filiformis (J. Agardh) Zanardini	SCI	1		1										2
Peyssonnelia inamoena Pilger	SC								1		1			2

Peyssonnelia squamariae (Gmelin) Decaisne	SC						1	20						2
Rodriguezella strafforelli Schmitz	CC	1	1											2
Spermothamnion flabellatum Bornet	SCI							1	1					2
Aglaothamnion tripinnatum (C. Agardh)	SCI			1									1	2
Feldmann-Mazoyer Antithamnion cruciatum (C. Agardh) Naegeli	301			1										2
v. profundum G. Feldmann-Mazoyer	CC			1				1						2
Callithamnion byssoides Arnott ex Harvey	SI	1						1						2
Eupogodon spinellus (C. Agardh) Zanardini	CCT			1	1									2
Griffithsia schousboei Montagne	SCIT					1	1							2
Ptilothamnion pluma (Dillwyn) Thuret	SC		1										1	2
Zonaria tournefortii (Lamouroux) Montagne	SCI						1		1					1
Botryocladia botryoides (Wulfen) J. Feldmann Peyssonnelia rosa-marina Boudouresque & Denizot	SSBc SM				1		,		1					1
Botryocladia boergesenii J. Feldmann	SC		1		1									1
Bryopsis cupressina Lamouroux	SCI	1												1
Ceramium tenerrimum (Martens) Okamura	SSB			1										1
Codium effusum (Rafinesque) Delle Chiaje	SCI				1									1
Halymenia latifolia Kuetzing	CC	1												1
Kallymenia feldmannii Codomier	SC	1												1
Laurencia pelagosae Schiffner	SRh								1					1
Lomentaria chylocladiella Funk	SC		1										1	1
Microdictyon tenuius (C. Agardh) Decaisne Monosporus penicillatus (Smith) Solier	CCT		J					1						1
Nitophyllum micropunctatum Funk	SCI					1								1
Peyssonnelia bornetii Boudouresque & Denizot	SC										1			1
Peyssonnelia harveyana P.L. & H.M. Crouan	SIC		1											1
Rhodymenia ligulata Zanardini	SC						1							1
Rodriguezzella ligulata J. Feldmann	CC		1											1
Sebdenia dichotoma Berthold	SM		1											1
Espèces photophiles														
Dictyota dichotoma (Hudson) Lamouroux	PhIC	20	20	20	10	10	5	5	1	1	1	1	5	12
Jania adhaerens Lamouroux	PhIT	1	1	1	1	1	5	1	5	1		1		9
Jania rubens (Linnée) Lamouroux	PhI	1			1	1	1		1	1	1		1	8
Polysiphonia furcellata (C. Agardh) Harvey	ISR		1	1	1		1	1	1			1	1	8
Herposiphonia secunda (C. Agardh) Ambronn	PhIC		1	1	1				1	1		1	1	7
Centroceras pignatii Giaccone	PhI	1	1	1	1		1						1	6
Ceramium flaccidum (Kuetzing) Ardissone	ISR	1	1	-	1	1	4			4			1	5
Halopteris scoparia (Linnée) Sauvageau	PhIC PhI	1		5	1		1	1		1		1	1	5
Laurencia obtusa (Hudson) Lamouroux Asparagopsis armata (tetraspor.) Harvey	ISR	1					1	1		1	1	1		4
Polysiphonia dichotoma Kuetzing	PhI			1		1	,					1	1	4
Spyridia filamentosa (Wulfen) Harvey	PhIT	1				1		1	1					4
Ceramium circinatum (Kuetzing) J. Agardh	ISR	1	1	1										3
Laurencia microcladia Kuetzing	PhI			1								1	1	3
Lithophillum incrustans Philippi	ISR	5									1	1		3
Sphacelaria cirrosa (Roth) C. Agardh	PhI	1						1	1					3
Antithamnion cruciatum (C. Agardh) Naegeli v. cruciatum f. radicans (J. Agardh) Collins & Herveg	ISR							1					1	2
Ceramium tenuissimum (Lyngbye) J. Agardh	PhIC		1	1				,					1	2
Crouania attenuata (C. Agardh) J. Agardh	PhI					1	1							2
Gelidium latifolium (Greville) Bornet	PhI			1		1								2
Herposifonia secunda (C. Agardh) Ambron f. tenella														
(C. Agardh) Wynne	PhIC		1		1									2
Ceramium diaphanum (Lightfoot) Roth	ISR									1				1
Chondria dasyphylla (Woodward) C. Agardh	PhIC	1					1							1
Rytiphloea tinctoria (Clemente) C. Agardh	PhIT	1												1
Autres														
Lophocladia lallemandii (Montagne) Schmitz		5	10	1	5	40	20	60	60	20	1	5	1	12
Polysiphonia pulvinata (Roth) Sprengel		1	1	1	1	1	1	1	1	4	1	1	1	10
Sphacelaria sp.	AS	1	1	1	1	1	20	c	10	1	1	1	1 5	9
Flabellia petiolata (Turra) Nizzamuddin Erythrocladia irregularis Rosevinge	M3	1	1	1	5		20	5 1	10	1	1	1	1	7
Cladophora sp. 1		1		1	1	1			1	1			- 10	6
Phylliphora crispa (Hudson) Dixon		·5	10	1	1	1			-					5
		4000			147	200								
Polysiphonia neglecta Bornet			1	1			1							3
Polysiphonia neglecta Bornet Halimeda tuna (Ellis & Solander) Lamouroux	AS		1	1	1		1		1		5			3

Hypnea cervicornis J. Agardh					1		1	1		2
Polysiphonia variegata (C. Agardh) Zanardini		1		1						2
Cladophora sp. 2			1						1	2
Sargassum sp.	1									1
Phaeophila dendroides (P.L. & H.M. Crouan) Batters			1							1
Rhodophyllis strafforelli Ardissone						1				1
Laurencia sp.								1		1
Lithophyllum sp.					1					1
Dasya baillouviana (Gmelin) Montagne									1	1
Gelidiella sp.									1	1
Griffithsia sp.							1			1
Bryopsis sp.	1									1
Ceramium giacconei Cormaci & Furnari						1				1
Antithamnion sp.		1								1
Botryocladia sp.				1						1

des nombreuses cuvettes de sédiments qui alternent avec le substrat dur où *C. dubia* s'installe. Après lavage à l'eau douce et séchage, un sous-échantillon de 250 g (poids sec) de sédiment a été utilisé pour l'analyse granulométrique, le type de sédiment présent paraissant être un facteur important de l'habitat de *C. dubia*.

RÉSULTATS ET DISCUSSION

Aspects généraux

C. dubia développe sa canopée (partie dressée du thalle) entre avril et octobre, période pendant laquelle le peuplement à *C. dubia* apparaît avec son aspect typique. En automne-hiver (novembre-mars), seule la partie prostrée de *C. dubia* survit sous forme de cauloïdes cylindriques et ramifiés, de 2-3 mm de diamètre. Sa période de reproduction a lieu en juillet-août.

Dans le peuplement, 118 espèces d'algues ont été identifiées (Tableau I), avec 45 espèces, en moyenne, par relevé. Le R/P moyen (5.5) est un peu supérieur à la valeur moyenne obtenue dans le circalittoral sicilien (4,1) (Cormaci *et al.*, 1985).

Le recouvrement total moyen est de 171,4 %, avec des valeurs doubles en été par rapport à l'hiver.

Les caractéristiques environnementales du

Tableau II - Dominance quantitative des espèces sciaphiles (groupes écologiques : SSB, SSBf, SSBc, SM, SI, SIC, SCI, SCIT, SC, SRh, CC, CCT), photophiles (groupes écologiques : PhI, PhIT, PhIC), infralittorales de substrat rocheux (groupe écologique : ISR) et des autres. / Quantitative dominance of the sciaphilic species (ecological groups : SSB, SSBf, SSBc, SM, SI, SIC, SCI, SCIT, SC, SRh, CC, CCT), photophilic (ecological groups: PhI, PhIT, PhIC), infralittoral of hard bottoms (ecological group ,;: ISR) and other species.

	mai	jui	juil	aoû	sep	oct	nov	déc	jan	fév	mar	avr	moy
Sciaphiles	73,9	76,5	83,1	80,1	72,4	75,1	63,6	57,7	75,3	86,3	88,9	76,6	75,8
Photophiles	14,7	10,9	12,2	7,9	5,6	4,2	3,2	4,1	3,4	1,1	1,8	8,1	6,4
Infralittorales, rocheux	3,8	1,3	0,9	1,7	0,5	0,9	0,9	1,1	1,6	2,1	1,8	2,3	1,6
Autres	7,6	11,3	3,9	10,2	21,5	19,9	32,1	37,3	19,5	10,5	7,4	12,9	16,2

Tableau III - Dominance qualitative des espèces sciaphiles (groupes écologiques : SSB, SSBf, SSBc, SM, SI, SIC, SCI, SCIT, SC, SRh, CC, CCT), photophiles (groupes écologiques : PhI, PhIT, PhIC), infralittorales de substrat rocheux (groupe écologique : ISR) et des autres. / Qualitative dominance of the sciaphilic species (ecological groups : SSB, SSBf, SSBc, SM, SI, SIC, SCI, SCIT, SC, SRh, CC, CCT), photophilic (ecological groups: PhI, PhIT, PhIC), infralittoral of hard bottoms (ecological group: ISR) and other species.

	mai	jui	juil	aoû	sep	oct	nov	déc	jan	fév	mar	avr	moy
Sciaphiles	64,1	63,7	59,2	60,1	65,1	66,6	75,5	76,6	68,6	73,7	63,6	62,9	66,3
Photophiles	16,1	12,7	18,4	14,1	16,2	19,6	9,4	10,6	14,3	5,3	11,4	17,4	13,8
Infralittorales, rocheux	6,1	6,3	4,1	5,9	2,4	3,9	3,8	11	5,7	5,3	6,8	4,3	4,5
Autres	14,1	16,9	18,4	19,9	16,4	9,8	11,3	16,9	11,5	15,8	18,2	15,2	15,4

Tableau IV - Dominance quantitative (DR%), dominance qualitative (DQ%) et tension (T) des espèces de mode calme (groupes écologiques : PhIC, SCI, SCIT, SC). / Quantitative dominance (DR%), qualitative dominance (DQ%) and tension (T) of quiet waters species (ecological groups: PhIC, SCI, SCIT, SC).

	mai	jui	juil	aoû	sep	oct	nov	déc	jan	fév	mar	avr	moy
DR%	63,1	73,1	86,7	74,1	64,4	60,1	55,8	41,2	44,9	63,6	70,4	68,9	63,9
DQ%	35,9	38,4	46,9	40,1	37,1	45,1	43,4	44,7	45,7	39,5	45,5	47,8	42,5
T (DR % / DQ %)	1,75	1,91	1,85	1,85	1,73	1,33	1,29	0,92	0,98	1,61	1,55	1,44	1,51

peuplement sont indiquées par la dominance quantitative et la dominance qualitative des espèces sciaphiles (Tableaux II et III) et des espèces de mode calme (Tableau IV).

Cette étude et des travaux antérieurs (Campisi et al., 1973; Furnari, Scammacca, 1973; Furnari et al., 1977) montrent qu'un groupe d'espèces semble caractériser un peuplement à C. dubia : C. dubia, Nitophyllum tristromaticum (SC), Peyssonnelia rubra (SĆ), Ceramium bertholdii (CC). Par ailleurs, Giaccone et al. (1994) considèrent seulement C. dubia et N. tristromaticum comme les espèces caractéristiques du Cystoseiretum dubiae, appartenant à la classe physociologique Cystoseiretea Giaccone, 1965, tandis que P. rubra et C. bertholdii appartiennent à la classe phytosociologique Lithophylletea Giaccone, 1965. Kallymenia patens est aussi considéré par Giaccone et al. en tant qu'espèce caractéristique du Cystoseiretum dubiae. Cependant, son absence du peuplement étudié ici n'a pas trouvé explication.

Acrosorium venulosum (CCT), Contarinia squamaria (SC), Neurocaulon foliosum (SC) et Sebdenia monardiana (CC) ici sont définies comme "espèces différentielles ", en raison de leur fréquence (p = présence dans les 12 relevés) et/ou leur recouvrement, qui caractérisent le peuplement.

Pour tous ces motifs, on a ici attribué le groupe écologique SC (Sciaphile de mode Calme) à *C. dubia* (auparavant elle n'avait pas un groupe d'appartenance) pour les calculs de dominance. En effet, en ne prenant pas en compte *C. dubia*, les valeurs de dominance et de tension des espèces sciaphiles et de mode calme ne changent guère au cours du cycle annuel.

Indice de diversité et structure du peuplement

L'indice de diversité varie entre 3,38 (août) et 4,91 (mars), atteignant les valeurs les plus faibles en été-automne et les plus élevées en hiver-printemps.

L'étude des fluctuations saisonnières de l'indice de diversité (H'), de l'équitabilité (E), du

nombre des espèces et de leurs recouvrements dans les 12 relevés mensuels, a permis d'individualiser les différentes phases du cycle annuel du peuplement. Ces phases sont strictement liées au cycle annuel de *C. dubia*:

Phase A (avril-novembre) : présence de la canopée de *C. dubia*, se décompose en deux sousphases :

- sous-phase A1 (avril-août): l'augmentation progressive du recouvrement de *C. dubia* entraine la réduction progressive de H' (de 4,3 à 3,38) et de E (de 0,79 à 0,60) (Tableau V).

- sous-phase A2 (septembre-novembre) : la réduction progressive du recouvrement de *C. dubia* entraîne l'augmentation progressive de H' et de E.

Phase B (décembre-mars) : absence de la canopée de *C. dubia*. Pendant cette phase, la distribution des espèces est plus équitable, ce qui détermine l'augmentation de H', de 3,76 (décembre) à 4,91 (mars), et de E, de 0,68 (décembre) à 0,88 (mars).

On peut ainsi remarquer que l'organisation et la distribution des espèces augmentent pendant l'hiver (phase B), en atteignant la valeur maximale vers mars, et diminue en été-printemps (phase A), quand *C. dubia* pousse et développe sa canopée. Cependant, la richesse floristique du peuplement est relativement stable toute l'année.

Aspects physicochimiques de l'eau et leur relation avec *C. dubia*

Le pH moyen de l'eau est 8,27, la salinité moyenne 37,94 g/Kg et l'oxygène dissous moyen 7,9 mg/l (Tableau VI).

La température varie entre 15° C (avril) et 19° C (octobre) avec une valeur annuelle moyenne de 16,8° C.

Le cycle annuel de *C. dubia* serait lié à la photopériode plutôt qu'à la température. Le cycle de développement de *C. dubia*, en effet , suit le cycle annuel de la photopériode d'à peu près 1-2 mois, et précède le cycle de la température d'à peu près 2-3 mois (Figure 2).

Tableau V - Nombre d'espèces (N), recouvrement total (RiT), recouvrement spécifique moyen par relevé (RiM), écart-type des recouvrement spécifiques par rapport à RiM (s), rapport R/P, indice de diversité de Shannon-Weaver (H'), indice de diversité maximale théorique (H'max) et équitabilité (E) pour chaque échantillon. moy = moyenne. / Number of species (N), total coverage (RiT), mean specific coverage per sample (RiM), standard deviation of the specific coverages related to RiM (s), diversity index of Shannon-Weaver (H'), theoretical maximum diversity index (H'max) and equitability (E) of each sample. moy = average.

	mai	jui	juil	aoû	sep	oct	nov	déc	jan	fév	mar	avr	moy
N	49	46	48	49	41	48	50	46	33	40	46	44	45,2
RiT (%)	185	232	233	177	217	218	215	199	118	99	81	90	171,4
RiM (%)	3,8	5,1	4,8	3,6	5,3	4,5	4,3	4,3	3,6	2,5	1,8	1,9	3,8
s (n-1)	7,7	10,2	13,2	12,8	13,6	8,9	10,2	10,3	5,8	4,3	2,1	4,5	8,6
R/P	4,5	5,1	4,7	4,4	4,6	4,7	6,3	7,5	5,6	6,1	6,2	5,8	5,5
H'	4,13	3,97	3,49	3,38	3,48	4,11	3,94	3,76	3,84	4,26	4,91	4,29	//
H'max	5,61	5,52	5,58	5,61	5,36	5,58	5,64	5,52	5,04	5,32	5,52	5,46	5,48
E	0,74	0,71	0,62	0,59	0,66	0,72	0,71	0,68	0,76	0,81	0,88	0,79	0,72

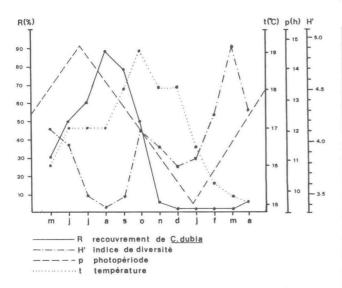


Figure 2 - Cycle de développement de *C. dubia* pendant l'année solaire, en relation avec température, photopériode et indice de diversité de Shannon-Weaver./Annual development cycle of C. dubia related to temperature, photoperiod and diversity index of Shannon-Weaver.

Tableau VI - Valeurs mensuelles de pH, salinité, oxygène dissous et température (à 34 et 3 m de profondeur) de l'eau. Moy = moyenne, s = écart-type, cv = coefficient de variation./Monthly values of pH, salinity, dissolved oxygen and temperature (at 34 and 3 m of depth) of the water. Moy = average, s = standard deviation, cv = coefficient of variation.

mois	рН	sal g/kg	O^2 mg/l	t°C 34 m	t°C 3 m
mai	//	\\	\\	16,0	17,0
juin	//	\\	\\	17,0	20,5
juil	//	//	\\	17,0	25,5
aoû	8,32	37,99	8,0	17,0	23,0
sep	8,30	37,78	7,7	18,0	22,0
oct	8,22	37,82	7,7	19,0	21,0
nov	8,16	37,70	8,3	18,0	18,0
déc	8,38	38,02	8,3	18,0	17,5
jan	8,32	37,99	8,2	16,5	16,5
fév	8,27	37,99	7,7	15,5	16,0
mar	8,30	38,10	7,7	15,2	15,8
avr	8,21	38,10	8,0	15,0	15,8
moy	8,27	37,94	7,9	16,8	19,5
S	0,064	0,134	0,250	1,207	3,115
CV	0,77	0,35	3,14	7,16	16,30

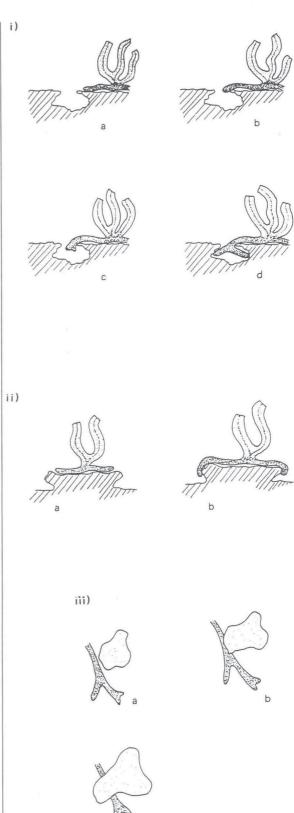


Figure 3 - Modalités d'ancrage de *C. dubia*: i) en pince, ii) en crochet, iii) ancrage passif (les cauloïdes prostrés sont couverts par des corallinacées encroutantes)./Modes of anchorage of C. dubia: i) pincers-type, ii) hook-type, iii) passive-type (prostrate cauloides are covered by crustose algae).

Typologie du substrat et modalités d'ancrage de *C. dubia*

Le substrat du peuplement étudié est une roche, d'origine volcanique couverte par un concrétionnement coralligène ayant une épaisseur comprise entre 2-3 cm et plus de 15 cm. La formation de ce concrétionnement est due à des corallinacées encroûtantes, des polychètes serpulides, et dans une moindre mesure des mollusques et des bryozoaires, qui agglomèrent le sédiment et le cimentent en une formation vacuolaire présentant de nombreuses aspérités et cavités.

L'observation d'autres peuplements à *C. dubia* dans le circalittoral de la Sicile orientale a montré que le substrat n'est pas toujours constitué par du concrétionnement coralligène, mais qu'il est toujours un substrat dur très irrégulier. Cette condition est probablement en relation avec les modalités d'ancrage de *C. dubia* au fond par des cauloïdes en pince (Figure 3, i), en crochet (Figure 3, ii), ou fixés passivement par des corallinacés (Figure 3, iii).

La sédimentation est importante (milieu à hydrodynamisme faible). Le sédiment appartient à la classe granulométrique des sables fins (classe dominante) (Tableau VII), d'origine biogène, constitué à plus de 95 % par des squelettes calcaires d'origine animale : mollusques, polychètes, échinodermes, bryozoaires et, pour une petite part, de spicules siliceuses de spongiaires. La composante minérale du sédiment est constituée pour une bonne part de matériel piroclastique dû à l'activité explosive du volcan Etna.

CONCLUSION

On sait maintenant que *C. dubia* a besoin d'un substrat dur très irrégulier pour s'installer. Le concrétionnement coralligène, d'un point de vue structural, semble être le substrat optimal pour les potentialités d'ancrage de *C. dubia*.

Types de sédiment	Dimensions (mm)	Poids (g)	%
CAILLOUX			
moyens	<32		
moyens-fins	<16		
fins	<8	7,18	2,90
GRANULÉS	<4	16,40	6,50
SABLE			
très grossier	<2	27,20	10,90
grossier	<1	38,10	15,24
moyen	<0,500	57,92	23,12
fin	<0,250	72,40	29,00
très fin	<0,125	27,20	10,90
VASE	<0,0625	3,60	1,44

L'intervalle de variation de la température de son biotope (14-19° C) est un peu plus étendu que ce qu'on pensait. Cependant, la température, à l'intérieur de cet intervalle, ne semble pas affecter le cycle de développement de *C. dubia*, qui semble suivre plutôt le cycle annuel de la photopériode.

Les variations de l'indice de diversité et de l'équitabilité traduisent les différentes phases du cycle annuel du peuplement, qui sont strictement liées au cycle annuel de *C. dubia*. Une première phase (A) est caractérisée par la présence de la canopée de *C. dubia* (recouvrement élevé), qui entraîne des valeurs de diversité et d'équitabilité en moyenne plus faibles ; une deuxième phase (B) est caractérisée par l'absence de la canopée de *C. dubia* (recouvrement faible), avec pour conséquence des valeurs de diversité et d'équitabilité en moyenne plus fortes. Chaque phase représente un niveau différent d'organisation du peuplement.

Enfin, certaines particularités du peuplement à *C. dubia* et de son biotope justifient la proposition de l'Association phytosociologique *Cystoseiretum dubiae* Furnari, Scammacca, Cormaci, Battiato, 1977 (in Giaccone et al., 1994), et non le maintien d'un faciès particulier du *Cystoseiretum zosteroidis* Giaccone, 1973, comme auparavant.

REMERCIEMENTS

Je tiens à remercier les lecteurs anonymes pour leurs remarques ponctuelles et précieuses afin de clarifier certains aspects de ce travail.

BIBLIOGRAPHIE

Boudouresque C.F., 1970 - Recherches de bionomie analytique, structurale et expérimentale sur les peuplements benthiques sciaphiles de Méditerranée occidentale (fraction algale). Thèse Doct. ès-Scie. Univ. Aix-Marseille II, 625 pp.

Boudouresque C.F., 1984 - Groupes écologiques d'algues marines et phytocénoses benthiques en Méditerranée nord-occidentale : une revue. *G. Bot. it.*, **118** (1/2,

supp. 2): 7-42

Campisi M.R., I. Di Geronimo, G. Furnari, B. Scammacca, 1973 - Premières observations sur les Algues, les Bryozoaires et les Mollusques d'un peuplement de Cystoseira dubia Valiante à l'île Lachea. Rapp. P.-v. Reun. CIESM, 22 (4): 51-52.

Cormaci M., G. Furnari, G. Giaccone, P. Colonna, A.M. Mannino, 1985 - Metodo sinecologico per la valutazione degli apporti inquinanti nella rada di Augusta (Siracusa). *Boll. Sedute Accad. Gioenia Sci nat. Catania*, **18** (326) : 829-850.

Feldmann J., 1937 - Recherches sur la végétation marine de la Méditerranée : Côte des Albères. *Revue algol.*, 10 : 1-339

Frontier S., D. Pichod-Vial, 1991 - Ecosystèmes : structure, fonctionnement, évolution. Masson, Paris, 392 pp.

- Furnari G., B. Scammacca, 1973 Osservazioni preliminari su alcuni popolamenti algali della costa orientale della Sicilia. *Atti V Congr. Soc. ital. Biol. mar.*: 42-48
- Furnari G., B. Scammacca B., M. Cormaci, A. Battiato, 1977 - Zonazione della vegetazione sommersa dell'isola Lachea. *Atti IX Cong. Soc. ital. Biol. mar.,* : 245-257.
- Giaccone G., 1973 Elementi di botanica marina 1; Bionomia Bentonica e Vegetazione sommersa del Mediterraneo. Pubbl. Ist. bot., Uniu Trieste, 41 pp.
- terraneo. Pubbl. Ist. bot., Uniu Trieste, 41 pp.
 Giaccone G., G. Alongi, F. Pizzuto, A. Cossu, 1994 La
 vegetazione marina bentonica fotofila del Mediterra-
- neo : Infralitorale e Circalitorale. Proposte di aggiornamento. *Boll. sedute Accad. Gioenia Sci. nat. Catania*, **27** (346) : 1-47
- Valiante R., 1883 Cystoseire del Golfo di Napoli. Fauna und Flora des Golfes von Neapel Wilhelm Engelmann, Leipzig, 24 pp.

Reçu en mai 1994 ; accepté en juillet 1995. Received May 1994; accepted July 1995.